Global Positioning System
I INTRODUCTION
Global Positioning
System (GPS), space-based radio-navigation system (see Navigation),
consisting of 24 satellites and ground support. GPS provides users with
accurate information about their position and velocity, as well as the
time, anywhere in the world and in all weather conditions.
II HISTORY AND DEVELOPMENT
GPS,
formally known as the Navstar Global Positioning System, was initiated
in 1973 to reduce the proliferation of navigation aids. GPS is operated
and maintained by the United States Department of Defense. By creating a
system that overcame the limitations of many existing navigation
systems, GPS became attractive to a broad spectrum of users. GPS has
been successful in classical navigation applications, and because its
capabilities are accessible using small, inexpensive equipment, GPS has
also been used in many new applications.
III HOW GPS WORKS
GPS
determines location by computing the difference between the time that a
signal is sent and the time it is received. GPS satellites carry atomic
clocks that provide extremely accurate time (see Clocks and Watches:
Atomic Clocks). The time information is placed in the codes broadcast by
the satellite so that a receiver can continuously determine the time
the signal was broadcast. The signal contains data that a receiver uses
to compute the locations of the satellites and to make other adjustments
needed for accurate positioning. The receiver uses the time difference
between the time of signal reception and the broadcast time to compute
the distance, or range, from the receiver to the satellite. The receiver
must account for propagation delays, or decreases in the signal's speed
caused by the ionosphere and the troposphere. With information about
the ranges to three satellites and the location of the satellite when
the signal was sent, the receiver can compute its own three-dimensional
position.
An atomic clock synchronized to GPS is required in order to
compute ranges from these three signals. However, by taking a
measurement from a fourth satellite, the receiver avoids the need for an
atomic clock. Thus, the receiver uses four satellites to compute
latitude, longitude, altitude, and time.
IV THE PARTS OF GPS
GPS
comprises three segments: the space, control, and user segments. The
space segment includes the satellites and the Delta rockets that launch
the satellites from Cape Canaveral, in Florida. GPS satellites fly in
circular orbits at an altitude of 20,100 km (12,500 mi) and with a
period of 12 hours. The orbits are tilted to the earth's equator by 55
degrees to ensure coverage of polar regions. Powered by solar cells, the
satellites continuously orient themselves to point their solar panels
toward the sun and their antennas toward the earth. Each satellite
contains four atomic clocks.
The control segment includes the master
control station at Falcon Air Force Base in Colorado Springs, Colorado,
and monitor stations at Falcon Air Force Base and on Hawaii, Ascension
Island in the Atlantic Ocean, Diego Garcia Atoll in the Indian Ocean,
and Kwajalein Island in the South Pacific Ocean. These stations monitor
the GPS satellites. The control segment uses measurements collected by
the monitor stations to predict the behavior of each satellite's orbit
and clock. The prediction data is uplinked, or transmitted, to the
satellites for transmission to the users. The control segment also
ensures that the GPS satellite orbits and clocks remain within
acceptable limits.
The user segment includes the equipment of the
military personnel and civilians who receive GPS signals. Military GPS
user equipment has been integrated into fighters, bombers, tankers,
helicopters, ships, submarines, tanks, jeeps, and soldiers' equipment.
In addition to basic navigation activities, military applications of GPS
include target designation, close air support, “smart” weapons, and
rendezvous.
With more than 500,000 GPS receivers, the civilian
community has its own large and diverse user segment. Surveyors use GPS
to save time over standard survey methods. GPS is used by aircraft and
ships for en route navigation and for airport or harbor approaches. GPS
tracking systems are used to route and monitor delivery vans and
emergency vehicles. In a method called precision farming, GPS is used to
monitor and control the application of agricultural fertilizer and
pesticides. GPS is available as an in-car navigation aid and is used by
hikers and hunters. GPS is also used on the Space Shuttle (see Space
Exploration: Space Shuttle). Because the GPS user does not need to
communicate with the satellite, GPS can serve an unlimited number of
users.
V GPS CAPABILITIES
GPS is available in two basic forms:
the standard positioning service (SPS) and the precise positioning
service (PPS). SPS provides a horizontal position that is accurate to
about 100 m (about 330 ft); PPS is accurate to about 20 m (about 70 ft).
For authorized users—normally the United States military and its
allies—PPS also provides greater resistance to jamming and immunity to
deceptive signals.
Enhanced techniques such as differential GPS
(DGPS) and the use of a carrier frequency processing have been developed
for GPS (see Carrier Wave). DGPS employs fixed stations on the earth as
well as satellites and provides a horizontal position accurate to about
3 m (about 10 ft). Surveyors pioneered the use of a carrier frequency
processing to compute positions to within about 1 cm (about 0.4 in).
SPS, DGPS, and carrier techniques are accessible to all users.
The
availability of GPS is currently limited by the number and integrity of
the satellites in orbit. Outages due to failed satellites still occur
and affect many users simultaneously. Failures can be detected
immediately and users can be notified within seconds or minutes
depending on the user's specific situation. Most repairs are
accomplished within one hour. As GPS becomes integrated into critical
operations such as traffic control in the national airspace system,
techniques for monitoring the integrity of GPS on-board and for rapid
notification of failures are being developed and implemented.
VI THE FUTURE OF GPS
As
of 2001, 24 GPS satellites were in operation. Replenishment satellites
are ready for launch, and contracts have been awarded to provide
satellites into the 21st century. GPS applications continue to grow in
land, sea, air, and space navigation. The ability to enhance safety and
to decrease fuel consumption will make GPS an important component of
travel in the international airspace system. Airplanes will use GPS for
landing at fogbound airports. Automobiles will use GPS as part of
intelligent transportation systems. Emerging technologies will enable
GPS to determine not only the position of a vehicle but also its
altitude.
GPS menentukan penempatan dengan komputasi
perbedaan [itu] antar[a] waktunya yang suatu isyarat dikirim dan
waktunya [itu] diterima. GPS satelit membawa jam atom yang menyediakan
waktu sangat akurat ( lihat Jam dan [Arloji/Penantian]: Jam Atom).
Waktunya informasi ditempatkan siaran kode oleh satelit sedemikian
sehingga suatu penerima dapat secara terus-menerus menentukan waktunya
isyarat adalah menyiarkan. Isyarat berisi data yang suatu penerima
menggunakan untuk menghitung penempatan satelit dan untuk membuat lain
penyesuaian yang diperlukan untuk [yang] memposisikan akurat. Penerima
menggunakan waktunya perbedaan antar[a] waktunya resepsi isyarat dan
waktu siaran untuk menghitung jarak [itu], atau mencakup, dari penerima
kepada satelit [itu]. Penerima harus meliputi keterlambatan
perkembangbiakan, atau penurunan kecepatan isyarat disebabkan oleh
ionospher [itu] dan troposphere [itu]. Dengan informasi tentang cakupan
[bagi/kepada] tiga satelit dan penempatan satelit ketika isyarat telah
dikirim, penerima dapat menghitung three-dimensional sendiri
memposisikan.
Suatu jam atom yang disamakan ke GPS diperlukan dalam
rangka menghitung terbentang dari tiga isyarat ini . Bagaimanapun,
dengan suatu pengukuran dari suatu satelit keempat, penerima menghindari
kebutuhan akan suatu jam atom. Seperti itu, penerima menggunakan empat
satelit untuk menghitung garis lintang, garis bujur, ketinggian, dan
waktu.
IV BAGIAN DARI GPS
GPS meliputi tiga segmen:
[ruang;spasi], kendali, dan segmen pemakai. Segmen [Ruang;Spasi]
meliputi satelit [itu] dan Delta meluncur itu meluncurkan satelit [itu]
dari Tanjung/Mantol Canaveral, di (dalam) Florida. GPS satelit terbang
orbit lingkar pada suatu ketinggian 20,100 km ( 12,500 mi (3)) dan
dengan masa 12 jam. Garis edar dimiringkan kepada katulistiwa bumi oleh
55 derajat tingkat untuk memastikan pemenuhan [dari;ttg] daerah kutub.
bertenaga mesin Oleh sel matahari, satelit [yang] secara terus-menerus
mengorientasi diri mereka untuk menunjuk panel [yang] matahari mereka ke
arah matahari dan antena mereka ke arah bumi. Masing-Masing satelit
berisi empat jam atom.
Segmen Kendali meliputi stasiun kendali guru
[itu] pada Angkatan Udara Burung elang falcon Dasarkan Colorado [Musim
semi/ mata air], Colorado, dan setasiun monitor pada Dasar Angkatan
Udara Burung elang falcon dan pada [atas] Hawaii, Pulau Kenaikan di
(dalam) Samudra Lautan Atlantik, Diego Garcia Pulau karang di (dalam)
Lautan India, dan Kwajalein Pulau di (dalam) Lautan Teduh Selatan.
Setasiun ini memonitor [itu] GPS satelit. Segmen Kendali menggunakan
pengukuran yang dikumpulkan oleh setasiun monitor untuk meramalkan
perilaku dari tiap jam dan garis edar satelit. Data Ramalan adalah
uplinked, atau dipancarkan, kepada satelit untuk transmisi kepada para
pemakai [itu]. Segmen Kendali juga memastikan bahwa [itu] GPS garis edar
satelit dan sisa jam di dalam batas bisa diterima.
Segmen Pemakai
meliputi peralatan personil militer dan warganegara [siapa] yang
menerima GPS isyarat. Militer GPS pemakai peralatan telah terintegrasi
ke dalam pejuang, bomber, kapal tangki, helikopter, kapal, kapal selam,
tangki/tank, jeep, dan peralatan prajurit. Sebagai tambahan terhadap
aktivitas ilmu pelayaran basis dasar, aplikasi militer GPS meliputi
tujuan target, menutup pen;dukungan udara,
GPS KEMAMPUAN
GPS
ada tersedia di (dalam) dua format basis dasar: standard yang
memposisikan [jasa;layanan] ( SPS) dan yang tepat memposisikan
[jasa;layanan] ( PPS). SPS menyediakan suatu posisi horisontal yang
adalah akurat ke sekitar 100 m ( sekitar 330 ft); PPS adalah akurat ke
sekitar 20 m ( sekitar 70 ft). Karena [yang] diberi hak users-normally
Militer Amerika Serikat dan allies-PPS nya juga menyediakan pembalasan
lebih besar [bagi/kepada] menyumbat dan imunitas ke isyarat menipu.
Teknik yang ditingkatkan seperti diferensial GPS ( DGPS) dan penggunaan
suatu freknensi pembawa pengolahan telah dikembangkan untuk GPS ( lihat
[Gelombang/Lambaian] Pembawa). DGPS mempekerjakan setasiun
ditetapkan;perbaiki pada [atas] bumi seperti halnya satelit dan
menyediakan suatu posisi horisontal yang akurat ke sekitar 3 m ( sekitar
10 ft). Para pensurvei memelopori penggunaan suatu pengolahan freknensi
pembawa untuk menghitung posisi ke di dalam sekitar 1 cm ( sekitar
0.4). SPS, DGPS, dan teknik pengangkut adalah dapat diakses
[bagi/kepada] semua para pemakai.
Ketersediaan GPS sekarang ini
terbatas oleh nomor;jumlah dan integritas satelit di (dalam) garis edar.
Outages dalam kaitan dengan satelit digagalkan masih terjadi dan
mempengaruhi para pemakai banyak orang [yang] secara serempak. Kegagalan
dapat dideteksi dengan seketika dan para pemakai dapat diberitahu dalam
beberapa detik atau beberapa menit yang tergantung pada situasi pemakai
spesifik [itu]. Kebanyakan pekerjaan pembetulan terpenuhi di dalam satu
jam. [Seperti/Ketika] GPS menjadi terintegrasi ke dalam operasi kritis
seperti lalu lintas mengendalikan airspace sistem yang nasional, teknik
untuk monitoring integritas GPS diatas kapal dan untuk pemberitahuan
kegagalan [yang] cepat dikembangkan dan diterapkan.
VI MASA DEPAN GPS
Mulai dari 2001, 24 GPS satelit sedang bekerja. Satelit Pengisian
kembali adalah siap untuk peluncuran, dan kontrak telah diberikan kepada
menyediakan satelit ke dalam abad 21 [itu]. GPS aplikasi melanjut untuk
berkembang dalam daratan, laut, udara, dan ilmu pelayaran
[ruang;spasi]. Kemampuan untuk tingkatkan keselamatan dan untuk
ber/kurang pemakaian bahanbakar akan membuat GPS suatu komponen [yang]
penting bepergian airspace sistem yang internasional. Pesawat udara akan
menggunakan GPS untuk mendaratkan pada pelabuhan udara terhalang kabut.
Mobil akan menggunakan GPS sebagai bagian dari sistem transportasi
cerdas. Muncul teknologi akan memungkinkan GPS untuk menentukan tidak
hanya posisi suatu sarana (angkut) tetapi juga ketinggian nya.