Global Positioning System
I  INTRODUCTION
Global Positioning 
System (GPS), space-based radio-navigation system (see Navigation), 
consisting of 24 satellites and ground support. GPS provides users with 
accurate information about their position and velocity, as well as the 
time, anywhere in the world and in all weather conditions.
II  HISTORY AND DEVELOPMENT
GPS,
 formally known as the Navstar Global Positioning System, was initiated 
in 1973 to reduce the proliferation of navigation aids. GPS is operated 
and maintained by the United States Department of Defense. By creating a
 system that overcame the limitations of many existing navigation 
systems, GPS became attractive to a broad spectrum of users. GPS has 
been successful in classical navigation applications, and because its 
capabilities are accessible using small, inexpensive equipment, GPS has 
also been used in many new applications.
III  HOW GPS WORKS
GPS 
determines location by computing the difference between the time that a 
signal is sent and the time it is received. GPS satellites carry atomic 
clocks that provide extremely accurate time (see Clocks and Watches: 
Atomic Clocks). The time information is placed in the codes broadcast by
 the satellite so that a receiver can continuously determine the time 
the signal was broadcast. The signal contains data that a receiver uses 
to compute the locations of the satellites and to make other adjustments
 needed for accurate positioning. The receiver uses the time difference 
between the time of signal reception and the broadcast time to compute 
the distance, or range, from the receiver to the satellite. The receiver
 must account for propagation delays, or decreases in the signal's speed
 caused by the ionosphere and the troposphere. With information about 
the ranges to three satellites and the location of the satellite when 
the signal was sent, the receiver can compute its own three-dimensional 
position.
An atomic clock synchronized to GPS is required in order to
 compute ranges from these three signals. However, by taking a 
measurement from a fourth satellite, the receiver avoids the need for an
 atomic clock. Thus, the receiver uses four satellites to compute 
latitude, longitude, altitude, and time.
IV  THE PARTS OF GPS
GPS 
comprises three segments: the space, control, and user segments. The 
space segment includes the satellites and the Delta rockets that launch 
the satellites from Cape Canaveral, in Florida. GPS satellites fly in 
circular orbits at an altitude of 20,100 km (12,500 mi) and with a 
period of 12 hours. The orbits are tilted to the earth's equator by 55 
degrees to ensure coverage of polar regions. Powered by solar cells, the
 satellites continuously orient themselves to point their solar panels 
toward the sun and their antennas toward the earth. Each satellite 
contains four atomic clocks.
The control segment includes the master 
control station at Falcon Air Force Base in Colorado Springs, Colorado, 
and monitor stations at Falcon Air Force Base and on Hawaii, Ascension 
Island in the Atlantic Ocean, Diego Garcia Atoll in the Indian Ocean, 
and Kwajalein Island in the South Pacific Ocean. These stations monitor 
the GPS satellites. The control segment uses measurements collected by 
the monitor stations to predict the behavior of each satellite's orbit 
and clock. The prediction data is uplinked, or transmitted, to the 
satellites for transmission to the users. The control segment also 
ensures that the GPS satellite orbits and clocks remain within 
acceptable limits.
The user segment includes the equipment of the 
military personnel and civilians who receive GPS signals. Military GPS 
user equipment has been integrated into fighters, bombers, tankers, 
helicopters, ships, submarines, tanks, jeeps, and soldiers' equipment. 
In addition to basic navigation activities, military applications of GPS
 include target designation, close air support, “smart” weapons, and 
rendezvous.
With more than 500,000 GPS receivers, the civilian 
community has its own large and diverse user segment. Surveyors use GPS 
to save time over standard survey methods. GPS is used by aircraft and 
ships for en route navigation and for airport or harbor approaches. GPS 
tracking systems are used to route and monitor delivery vans and 
emergency vehicles. In a method called precision farming, GPS is used to
 monitor and control the application of agricultural fertilizer and 
pesticides. GPS is available as an in-car navigation aid and is used by 
hikers and hunters. GPS is also used on the Space Shuttle (see Space 
Exploration: Space Shuttle). Because the GPS user does not need to 
communicate with the satellite, GPS can serve an unlimited number of 
users.
V  GPS CAPABILITIES
GPS is available in two basic forms: 
the standard positioning service (SPS) and the precise positioning 
service (PPS). SPS provides a horizontal position that is accurate to 
about 100 m (about 330 ft); PPS is accurate to about 20 m (about 70 ft).
 For authorized users—normally the United States military and its 
allies—PPS also provides greater resistance to jamming and immunity to 
deceptive signals.
Enhanced techniques such as differential GPS 
(DGPS) and the use of a carrier frequency processing have been developed
 for GPS (see Carrier Wave). DGPS employs fixed stations on the earth as
 well as satellites and provides a horizontal position accurate to about
 3 m (about 10 ft). Surveyors pioneered the use of a carrier frequency 
processing to compute positions to within about 1 cm (about 0.4 in). 
SPS, DGPS, and carrier techniques are accessible to all users.
The 
availability of GPS is currently limited by the number and integrity of 
the satellites in orbit. Outages due to failed satellites still occur 
and affect many users simultaneously. Failures can be detected 
immediately and users can be notified within seconds or minutes 
depending on the user's specific situation. Most repairs are 
accomplished within one hour. As GPS becomes integrated into critical 
operations such as traffic control in the national airspace system, 
techniques for monitoring the integrity of GPS on-board and for rapid 
notification of failures are being developed and implemented.
VI  THE FUTURE OF GPS
As
 of 2001, 24 GPS satellites were in operation. Replenishment satellites 
are ready for launch, and contracts have been awarded to provide 
satellites into the 21st century. GPS applications continue to grow in 
land, sea, air, and space navigation. The ability to enhance safety and 
to decrease fuel consumption will make GPS an important component of 
travel in the international airspace system. Airplanes will use GPS for 
landing at fogbound airports. Automobiles will use GPS as part of 
intelligent transportation systems. Emerging technologies will enable 
GPS to determine not only the position of a vehicle but also its 
altitude.
GPS menentukan penempatan dengan komputasi 
perbedaan [itu] antar[a] waktunya yang suatu isyarat dikirim dan 
waktunya [itu] diterima. GPS satelit membawa jam atom yang menyediakan 
waktu sangat akurat ( lihat Jam dan [Arloji/Penantian]: Jam Atom). 
Waktunya informasi ditempatkan siaran kode oleh satelit sedemikian 
sehingga suatu penerima dapat secara terus-menerus menentukan waktunya 
isyarat adalah menyiarkan. Isyarat berisi data yang suatu penerima 
menggunakan untuk menghitung penempatan satelit dan untuk membuat lain 
penyesuaian yang diperlukan untuk [yang] memposisikan akurat. Penerima 
menggunakan waktunya perbedaan antar[a] waktunya resepsi isyarat dan 
waktu siaran untuk menghitung jarak [itu], atau mencakup, dari penerima 
kepada satelit [itu]. Penerima harus meliputi keterlambatan 
perkembangbiakan, atau penurunan kecepatan isyarat disebabkan oleh 
ionospher [itu] dan troposphere [itu]. Dengan informasi tentang cakupan 
[bagi/kepada] tiga satelit dan penempatan satelit ketika isyarat telah 
dikirim, penerima dapat menghitung three-dimensional sendiri 
memposisikan.
 Suatu jam atom yang disamakan ke GPS diperlukan dalam 
rangka menghitung terbentang dari tiga  isyarat ini . Bagaimanapun, 
dengan suatu pengukuran dari suatu satelit keempat, penerima menghindari
 kebutuhan akan suatu jam atom. Seperti itu, penerima menggunakan empat 
satelit untuk menghitung garis lintang, garis bujur, ketinggian, dan 
waktu.
 IV BAGIAN DARI GPS
 GPS meliputi tiga segmen: 
[ruang;spasi], kendali, dan segmen pemakai. Segmen [Ruang;Spasi] 
meliputi satelit [itu] dan Delta meluncur itu meluncurkan satelit [itu] 
dari Tanjung/Mantol Canaveral, di (dalam) Florida. GPS satelit terbang 
orbit lingkar pada suatu ketinggian 20,100 km ( 12,500 mi (3)) dan 
dengan masa 12 jam. Garis edar dimiringkan kepada katulistiwa bumi oleh 
55 derajat tingkat untuk memastikan pemenuhan [dari;ttg] daerah kutub. 
bertenaga mesin Oleh sel matahari, satelit [yang] secara terus-menerus 
mengorientasi diri mereka untuk menunjuk panel [yang] matahari mereka ke
 arah matahari dan antena mereka ke arah bumi. Masing-Masing satelit 
berisi empat jam atom.
 Segmen Kendali meliputi stasiun kendali guru 
[itu] pada Angkatan Udara Burung elang falcon Dasarkan Colorado [Musim 
semi/ mata air], Colorado, dan setasiun monitor pada Dasar Angkatan 
Udara Burung elang falcon dan pada [atas] Hawaii, Pulau Kenaikan di 
(dalam) Samudra Lautan Atlantik, Diego Garcia Pulau karang di (dalam) 
Lautan India, dan Kwajalein Pulau di (dalam) Lautan Teduh Selatan. 
Setasiun ini memonitor [itu] GPS satelit. Segmen Kendali menggunakan 
pengukuran yang dikumpulkan oleh setasiun monitor untuk meramalkan 
perilaku dari tiap jam dan garis edar satelit. Data Ramalan adalah 
uplinked, atau dipancarkan, kepada satelit untuk transmisi kepada para 
pemakai [itu]. Segmen Kendali juga memastikan bahwa [itu] GPS garis edar
 satelit dan sisa jam di dalam batas bisa diterima.
 Segmen Pemakai 
meliputi peralatan personil militer dan warganegara [siapa] yang 
menerima GPS isyarat. Militer GPS pemakai peralatan telah terintegrasi 
ke dalam pejuang, bomber, kapal tangki, helikopter, kapal, kapal selam, 
tangki/tank, jeep, dan peralatan prajurit. Sebagai tambahan terhadap 
aktivitas ilmu pelayaran basis dasar, aplikasi militer GPS meliputi 
tujuan target, menutup pen;dukungan udara,
GPS KEMAMPUAN
 GPS 
ada tersedia di (dalam) dua format basis dasar: standard yang 
memposisikan [jasa;layanan] ( SPS) dan yang tepat memposisikan 
[jasa;layanan] ( PPS). SPS menyediakan suatu posisi horisontal yang 
adalah akurat ke sekitar 100 m ( sekitar 330 ft); PPS adalah akurat ke 
sekitar 20 m ( sekitar 70 ft). Karena [yang] diberi hak users-normally 
Militer Amerika Serikat dan allies-PPS nya juga menyediakan pembalasan 
lebih besar [bagi/kepada] menyumbat dan imunitas ke isyarat menipu.
 
Teknik yang ditingkatkan seperti diferensial GPS ( DGPS) dan penggunaan 
suatu freknensi pembawa pengolahan telah dikembangkan untuk GPS ( lihat 
[Gelombang/Lambaian] Pembawa). DGPS mempekerjakan setasiun 
ditetapkan;perbaiki pada [atas] bumi seperti halnya satelit dan 
menyediakan suatu posisi horisontal yang akurat ke sekitar 3 m ( sekitar
 10 ft). Para pensurvei memelopori penggunaan suatu pengolahan freknensi
 pembawa untuk menghitung posisi ke di dalam sekitar 1 cm ( sekitar 
0.4). SPS, DGPS, dan teknik pengangkut adalah dapat diakses 
[bagi/kepada] semua para pemakai.
 Ketersediaan GPS sekarang ini 
terbatas oleh nomor;jumlah dan integritas satelit di (dalam) garis edar.
 Outages dalam kaitan dengan satelit digagalkan masih terjadi dan 
mempengaruhi para pemakai banyak orang [yang] secara serempak. Kegagalan
 dapat dideteksi dengan seketika dan para pemakai dapat diberitahu dalam
 beberapa detik atau beberapa menit yang tergantung pada situasi pemakai
 spesifik [itu]. Kebanyakan pekerjaan pembetulan terpenuhi di dalam satu
 jam. [Seperti/Ketika] GPS menjadi terintegrasi ke dalam operasi kritis 
seperti lalu lintas mengendalikan airspace sistem yang nasional, teknik 
untuk monitoring integritas GPS diatas kapal dan untuk pemberitahuan 
kegagalan [yang] cepat dikembangkan dan diterapkan.
VI MASA DEPAN GPS
 Mulai dari 2001, 24 GPS satelit sedang bekerja. Satelit Pengisian 
kembali adalah siap untuk peluncuran, dan kontrak telah diberikan kepada
 menyediakan satelit ke dalam abad 21 [itu]. GPS aplikasi melanjut untuk
 berkembang dalam daratan, laut, udara, dan ilmu pelayaran 
[ruang;spasi]. Kemampuan untuk tingkatkan keselamatan dan untuk 
ber/kurang pemakaian bahanbakar akan membuat GPS suatu komponen [yang] 
penting bepergian airspace sistem yang internasional. Pesawat udara akan
 menggunakan GPS untuk mendaratkan pada pelabuhan udara terhalang kabut.
 Mobil akan menggunakan GPS sebagai bagian dari sistem transportasi 
cerdas. Muncul teknologi akan memungkinkan GPS untuk menentukan tidak 
hanya posisi suatu sarana (angkut) tetapi juga ketinggian nya.